

Getting from 48 V to Load Voltage: **Improving Low Voltage DC-DC Converter Performance** with GaN Transistors **Alex Lidow David Reusch**

John Glaser

State of the Art in GaN

- Design Basics
- Design Examples
- What is in the Future?

State of the Art

Theoretical Channel Resistance

epc-co.com

GaN Switch

Depletion Mode device

A positive voltage from Gate-To-Source establishes an electron gas under the gate

- Lower On Resistance
- Faster
- Smaller
- Lower Thermal Impedance
- Lower Cost

Lower On Resistance

Faster Switching

 $V_{DS}=0.5 \cdot V_{DSS}$

Ideal Hard Switching Turn Off

1

Faster Switching

High Speed Switching

 V_{DS} =0.5· V_{DSS} , I_{DS} =20 A

High Speed Switching

epc-co.com

Threshold vs. Temperature

Lower Output Charge

 $V_{DS}=0.5 \cdot V_{DSS}$

epc-co.com

Smaller Size

epc-co.com

	2010	2016
Starting Material	lower	lower
Epi Growth	~higher	~same?
Wafer Fab	lower	lower
Test	same	same
Assembly	lower	lower
OVERALL	~higher	lower!

* Product with the same on resistance and voltage rating

	2014	2016
Starting Material	lower	lower
Epi Growth	~same	~same?
Wafer Fab	lower	lower
Test	same	same
Assembly	lower	lower
OVERALL	lower!	lower!

* Product with the same on resistance and voltage rating

Better Power Package

Better Power Package

GaN Integration

Generation 2/4 Discrete HB

Top Switch (Q1) Bottom Switch (Q2)

Generation 4 Monolithic 1:4 HB

33 % die size reduction

GaN Integration

9	9	0	0	9	0	0	9 (9 (0	0	0	0 (9	9	0	0	0	0	0	9	0	0	Ó	9	Ø	0	9	9 9		6-6-6	660	8	8	0
0	0	9	Θ	0	0	0	0 (9 (0	0	0	0 (9	0	0	0	0	0	0	0	0	0	0	9	0	0	0	9 9		I contract of the second				
0	0	Ö	0	Ø	0	0	9 (9 (0	0	0	0 (9	0	0	0	0	0	0	0	0	0	0	0	9	0	9	9 9	2	$\Theta \Theta \Theta$		8	0	9
S.	9	9	0	9	0	9	9 (9 (9	9	0	0 (9	0	0	9	0	9	0	0	0	0	0	0	0	0	0	9 9	2	HIMMINE HIT	91111			6.
9	9	9	0	0	0	0	9 (9 (9	0	0	0 (9	9	0	0	0	0	9	9	0	0	0	9	9	0	0	9 9		\odot \odot \odot			œ.	9

Part Number	Configuration	V _{DS}	Max R _{DS(ON)} (mΩ) @5V _{GS}	Q _G typ (nC)	Q _{GS} typ (nC)	Q _{GD} typ (nC)	Q _{oss} typ (nC)	Q _{RR} (nC)	Pulsed I _D (A)
EPC2100	Dual Asymmetric	30	8 2	3.5 15	1.4 4.6	0.57 2.6	5.5 28	0	100 400
EPC2101	Dual Asymmetric	60	11.5 2.7	2.7 12	1 3.7	0.50 2.5	9 45	0	80 350
EPC2102	Dual	60	4.4	6.8	2.3	1.4	23 31	0	215
EPC2108	Dual with Bootstrap	60	190	0.22	0.085	0.045	0.65 1	0	5.5
EPC2105	Dual Asymmetric	80	14.5 3.5	2.5 10	1 3.2	0.50 2	11 55	0	75 320
EPC2103	Dual	80	5.5	6.5	2.0	1.3	29 39	0	195
EPC2104	Dual	100	6.3	7	2.0	1.2	35 47	0	165
EPC2106	Dual	100	70	0.73 0.76	0.22 0.24	0.165	3.4 4.4	0	18
EPC2107	Dual with Bootstrap	100	320	0.16	0.065	0.04	0.8 1.4	0	3.8
EPC2110	Dual, Common Source	120	60	0.8	0.25	0.19	4.9	0	20

March, 2016

APEC

Design Basics

Gate Drive

Gate Voltage

March, 2016

Gate Drive Design

File	Edit	Vertical	H <u>o</u> riz/Acq	Irig	<u>D</u> isplay	<u>C</u> ursors	Mea <u>s</u> ure	Math	<u>U</u> tilities	<u>H</u> elp
Tek	Stopped		8	154 Acqs	5		06	Oct 10 14	:26:57	Butto
					1					
									-	-
					<u>.</u>					
							+	- 4.5		
		V	CC E		dN		1			
			U 3 ~							
		1	1. 1		1			1		
Ę.			4	To an	. <u>.</u> .			-		Max(C2) 5.44V
				AAAA		And the second second	, pa pa pa			
-			-	Aur						
					1	1	0 !	- 0	040	Freq(C2) -Hz
i-							CILC	a 20	U1U	No period
					1					found
	-		1. 1. 1		·†·	1	-			+DtvCvc/021 -%
PE	بوسيوم	-	and the second second			AAA .		-	Line and Line	No period
			Y		1			1		found
		- + -				111	+	+		Min/021 2 RV
					<u>.</u>					-3.6Y
1				-+		1.		-		
1	2 V	/ div			1		80	ns/	' div	
-			Ch2	2.07		M 80.	Ons 5.0GS/s	200ps/p	t	
						A Ch2	2 2.8	Y		

Reliability of eGaN FET

Reference: R. Strittmatter, C. Zhou, A. Lidow, and Y. Ma, "Enhancement Mode Gallium Nitride Transistor Reliability," APEC 2015

Reference: Texas Instruments, "Gate Drivers for Enhancement Mode GaN Power FETs 100 V Half-Bridge and Low-Side Drivers Enable Greater Efficiency, Power Density, and Simplicity," SNVB001

Minimizing Overshoot

Dead-time

Reverse Conduction Period

AC

•

eGaN FET Reverse Conduction

APEC

Reverse Conduction Period

Dead Time Setup

V_{IN}=48 V V_{OUT}≈12 V I_{OUT}=0 A f_{sw}=300 kHz L=4.7uH

 V_{IN} =12 V, V_{OUT} =1.2 V, and f_{sw} =1 MHz

V_{IN}=48 V V_{OUT}=12 V f_{sw}=300 kHz L=4.7uH

Impact of Rising Edge Dead-time

 V_{IN} =48 V V_{OUT} =12 V f_{sw} =300 kHz L=4.7uH

Impact of Falling Edge Dead-time

V_{IN}=48 V V_{OUT}=12 V f_{sw}=300 kHz L=4.7uH

Dead-time Requirements

Layout

Converter Parasitics

<image><section-header>

SO-8

LGA eGaN FET

Reference: D. Reusch, D. Gilham, Y. Su, and F.C. Lee, C, "Gallium Nitride Based 3D Integrated Non-Isolated Point of Load Module," APEC 2012

March, 2016

epc-co.com

47

Measured Efficiency

 V_{IN} =12 V, V_{OUT} =1.2 V, f_{sw} =1 MHz, L=300 nH

EPC Optimal Layout

Ref: D. Reusch, J. Strydom, "Understanding the Effect of PCB Layout on Circuit Performance in a High Frequency Gallium Nitride Based Point of Load Converter," APEC 2013, IEEE Transactions on Power Electronics 2014

Switching Node Voltage V_{IN}=12 V V_{OUT}=1.2 V I_{OUT}=20 A f_{sw}=1 MHz L=150 nH

Side View

Conventional Vertical Layout

Bottom View

EPC Optimal Layout

Top View

Top View Inner Layer 1

Test	Cases

		Board Thickness (mils)	Inner Layer Distance (mils)
1	Design 1	31	4
er 1	Design 2	31	12
er 2	Design 3	62	4
yer	Design 4	62	26

Power Loss Comparison

 V_{IN} =12 V V_{OUT} =1.2 V I_{OUT} =20 A f_{sw} =1 MHz L=300 nH T/SR: EPC2015 Driver LM5113

Voltage Overshoot Comparison

 V_{IN} =12 V V_{OUT} =1.2 V I_{OUT} =20 A f_{sw} =1 MHz L=300 nH T/SR: EPC2015 Driver LM5113

10

Switching Speed Comparison

Optimal Power

Optimal Layout Implementation

Paralleling

Parallel Power Devices

Parasitic Imbalance

Loop Inductance Impact

 V_{IN} =48 V I_{OUT} =25 A eGaN FET T/SR: 100 V EPC2001 Nominal Drain Inductance L_D = L_{LOOP} - L_S =0.3 nH

March, 2016

Conventional Parallel Layout

 $V_{\text{IN}}\text{=}48 \text{ V} \text{ V}_{\text{OUT}}\text{=}12 \text{ V} \text{ I}_{\text{OUT}}\text{=}30 \text{ A} \text{ f}_{\text{sw}}\text{=}300 \text{ kHz L}\text{=}3.3 \text{ } \mu\text{H GaN FET T/SR: 100 V EPC2001}$

Optimal Parallel Layout

$V_{\text{IN}}\text{=}48 \text{ V } V_{\text{OUT}}\text{=}12 \text{ V } I_{\text{OUT}}\text{=}30 \text{ A } f_{\text{sw}}\text{=}300 \text{ kHz } \text{L}\text{=}3.3 \text{ } \mu\text{H } \text{GaN } \text{FET } \text{T/SR: } 100 \text{ V } \text{EPC2001}$

Reference: D. Reusch, J. Strydom, "Effectively Paralleling Gallium Nitride Transistors for High Current and High Frequency Applications," APEC 2015

Parallel Layout Performance

 $V_{\text{IN}}\text{=}48$ V $V_{\text{OUT}}\text{=}12$ V $f_{\text{sw}}\text{=}300$ kHz L=3.3 $\,\mu\text{H}$ GaN FET T/SR: 4x100 V EPC2001 $\,4$ Layer 2 oz PCB

 V_{IN} =48 V V_{OUT} =12 V I_{OUT} =30 A f_{sw} =300 kHz L=3.3 µH GaN FET T/SR: 100 V EPC2001

Parallel Layout Performance

 $V_{\text{IN}}\text{=}48$ V $V_{\text{OUT}}\text{=}12$ V $f_{\text{sw}}\text{=}300$ kHz L=3.3 $\,\mu\text{H}$ GaN FET T/SR: 100 V EPC2001 Fan Speed 200 LFM 4 Layer 2 oz PCB

Parallel eGaN FET Swithcing

V_{IN}=48 V V_{OUT}=12 V I_{OUT}=30 A/ number of devices f_{sw}=300 kHz GaN FET T/SR: 100 V EPC2001

PEC Further Increasing Current

Design Basics with Device Improvements

Thermal

Thermal Modeling

March, 2016

•

APEC Thermal Evaluation Boards

1x1 inch Buck Converter 4 Layers 2oz Copper

15x15x14.5 mm Heat Sink

March, 2016

Heat Sink Attachment

Thermal Comparison

25°C Devices 80 V EPC2021 Fan Speed=200 LFM V_{IN}=48 V V_{OUT}=12 V f_{sw}=300 kHz L=4.7 μH

APEC Improved Thermal Management

Impact of Heat Sink

48 V Non-Isolated Buck Converter

48 V Evaluation Boards

80 V 1.8 mΩ

LGA eGaN FET

80 V 3.7 mΩ CanPAK MOSFET

Active Area ≈150 mm²

EPC9921 Board B 2015

Active Area ≈60 mm²

80 V 6.8 mΩ S308 MOSFET

Active Area ≈132 mm²

APEC Efficiency Comparisons

APEC Power Loss Comparison

APEC eGaN FET and S308 MOSFET

March, 2016

Fan Speed=200 LFM V_{IN}=48 V V_{OUT}=12 V f_{sw} =300 kHz L=4.7 µH

March, 2016

25°C

eGaN FET

epc-co.com

S308 MOSFET

eGaN FET and CanPAK MOSFET

March, 2016

eGaN FET and CanPAK MOSFET

Can PAK MOSFET

Fan Speed=200 LFM V_{IN}=48 V V_{OUT}=12 V f_{sw} =300 kHz L=4.7 µH

March, 2016

March, 2016

APEC eGaN FET and S308 MOSFET

March, 2016

March, 2016

March, 2016

Impact of Heat Sink

Design Examples 48 V_{IN} to Load Voltage

Power Architecture

Requirements

- Power density
- Efficiency
- Availability
- Cost
- Ease of design
- Safety

Intermediate Bus Architecture (IBA)

DC Bus Architecture

48 V Isolated Hard-switched Regulated 1/8th Brick Converter

Some typical high-power *regulated* eighth-bricks

1 Ju.

	1			
V _{in}	38-55		V _{in}	42-60
V _{out}	9.6		V _{out}	12
I _{out}	31		lout	25
P _{out}	300		Pout	300
η_{max}	96.1%		η_{max}	96%
				-
V _{in}	40-60		V	15-55
V _{out}	12	A CONTRACTOR OF THE OWNER	v _{in}	45-55
laut	25		V _{out}	9.0
	200		I _{out}	33
Υ _{out}	500		P _{out}	320
η_{max}	95.5		η_{max}	95.5%

eGaN FETs can boost power up to 500W and beyond!

- 500 W at 12 V out
- 48 V to 60 V in
- Fully regulated
- Isolated
- > 96% full load efficiency
- DOSA-compliant footprint

Design Approach

Large area eGaN FETs

Part	Max V _{DS} [V]	I _D [A]	Max $R_{DS(on)}$ [m Ω]
EPC2020	60 V	60 A	2.0
EPC2021	80 V	60 A	2.5
EPC2022	100 V	60 A	3.2
EPC2023	30 V	60 A	1.3
EPC2024	40 V	60 A	1.5

Don't forget about size!

5X6 PQFN

- Minimize loop inductance
- Symmetry for V-s balance
- Copper for thermals
- Guide power currents away from signal ground
- Takes diligence, but doable the effort pays off!

Bottom side: input and output filter inductors, bias supply

March, 2016

Primary side optimal layout

Layer 2:

GND

Layer 3:

V_{IN}

Repeat 4X

Top layer: Drain

Layer 2: Ground

Repeat 4X

EPC9115 Demo Board Layout

TOP and Bottom views

Typical Performance Curves

Thermal steady state: 400 LFM (2 m/s) forced convection ambient temperature 27° C

Nominal Thermal Image

Thermal steady state: 400 LFM (2 m/s) forced convection ambient temperature 27° C

Power loss breakdown

(estimate)

Total: 16.6 W @ 100°C Excludes: Vias, solder joints, traces

50 ns/div

$$V_{in} = 52 V, V_{out} = 12 V, I_{out} = 42 A$$

- Improve bias supply (draws 1.3W, but bias load 0.6W)
- Add heat sink
- Optimize gate resistors
- Optimize dead time
- Use custom magnetics
- Optimize switching frequency

DCX performance with smaller inductor

<u>Operating conditions:</u> 400 LFM (2 m/s) forced convection ambient temperature 24°C *thermal steady state.*

APEC

Resonant Bus Converter

High Frequency DC/DC Transformer

Ref: Y. Ren, M. Xu, J. Sun, and F. C. Lee, "A family of high power density unregulated bus converters," IEEE Trans. Power Electron., vol. 20, no. 5, pp. 1045–1054, Sep. 2005.

eGaN FET vs. MOSFET

ZVS Switching Comparison

f_{sw} = 1.2 MHz, V_{IN} = 48 V, and V_{OUT} \approx 12 V

Ref: D. Reusch, J. Strydom, "Evaluation of Gallium Nitride Transistors in High Frequency Resonant and Soft-Switching DC-DC Converters," APEC 2014, IEEE Transactions on Power Electronics 2015

March, 2016

epc-co.com

Duty Cycle Comparison

f_{sw} = 1.2 MHz, V_{IN} = 48 V, and V_{OUT} \approx 12 V

 f_{sw} = 1.2 MHz, V_{IN} = 48 V, and V_{OUT} \approx 12 V

Projected results with Latest Generation FETs

$$P_{loss} = R_{out} I_{OUT}^2 + P_{fixed}$$

Non-isolated bus converter

APEC Efficiency Comparisons

Comparison

	Units	1/8 th -brick	Buck
Converter volume	in ³ (cm ³)	0.92 (15)	0.73 (12)
Input voltage	V	49-60	13-65
Output current	Α	42	42
Power density	W/in ³ (W/cm ³)	550 (34)	690 (42)
# FETs		8	2
# Gate drivers		4	1
# PCB layers		12	4

12 V_{IN} to 1 V_{OUT} POL Converter

12 V_{IN} POL Topology

http://media.digikey.com/ photos/EPC/EPC9201.JPG

https://www.fairchildsemi.com/collateral/ Generation-II-XS-DrMOS-Family.pdf

3D packaging advancements drive performance, power and density in power devices http://www.ti.com/lit/an/slit126/slit126.pdf

March, 2016

Switching Waveforms

 V_{IN} =12 V V_{OUT} =1 V I_{OUT} =20 A f_{sw} =1 MHz L=250 nH

March, 2016

epc-co.com

Switching Waveforms

V_{IN} =12 V V_{OUT} =1 V I_{OUT} =20 A f_{sw} =1 MHz L=250 nH

March, 2016

epc-co.com

APEC Efficiency Comparisons

Managing Voltage Spike

APEC Efficiency Comparisons

 V_{IN} =12 V V_{OUT} =1 V f_{sw} =1 MHz I_{OUT} =30 A L=250 nH

epc-co.com

APEC Efficiency Comparisons

March, 2016

APEC High Current GaN POL

APEC High Current GaN POL

 V_{IN} =12 V V_{OUT} =1 V f_{sw} =1 MHz L=250 nH

High Current GaN POL

 V_{IN} =12 V V_{OUT} =1 V I_{OUT} =20 A f_{sw} =1 MHz L=250 nH

epc-co.com

Design Comparisons

 V_{IN} =12 V V_{OUT} =1 V f_{sw} =1 MHz I_{OUT} =30 A L=250 nH

48 $V_{\rm IN}$ to 1 $V_{\rm OUT}$ POL Converter

 $48 V_{IN}$ to LOAD

Intermediate Bus Architecture

DC Bus Architecture

48 V_{IN} to LOAD

V_{IN}=48 V V_{OUT}=1 V L=330 nH

48 V_{IN} to LOAD

Intermediate Bus Architecture

DC Bus Architecture

48 V_{IN} to 1.8 V_{OUT} Bus Converter

"FIVR – Fully Integrated Voltage Regulators on 4th Generation Intel® Core[™] SoCs" APEC2014

Three Stage Intermediate Bus Architecture

48 V_{IN} to Integrated VR

 V_{IN} =48 V V_{OUT} =1 V L@ 1 V_{OUT} =330 nH V L@1.8 V_{OUT} =470 nH

Three Stage Intermediate Bus Architecture

Two Stage Non-Isolated Intermediate Bus Architecture

APEC Power Architecture Comparison

Parameter	Units	48 V _{IN} IBA		48 V _{IN} Direct Conversion
		48 V _{IN} – 12 V _{OUT} IBC	12 V _{IN} – 1.8 V _{OUT} IBC	48 V _{IN} – 1.8 V _{OUT} IBC
Stage Switching Frequency	kHz	300	1000	300
Total Power Devices ^a		22 ^b		18 ^b
System Transformer Isolation		Yes		No
PCB Complexity		High	Low	Low
Stage Efficiency	%	96	93	88
Bus Efficiency	%	98 ^c		99.9%
Total System Efficiency	%	87.5		87.9
Stage Power Density	W/in ³ (W/cm ³)	550 (34)	700 (43)	500 (31)
Total System Power Density	W/in ³ (W/cm ³)	300 (18)		500 (31)
Total System Cost		High		Low

Summary

- Initial comparison of Intermediate Bus Architecture and non-isolated DC Bus Architecture for Integrated VR
 - Cost of non-isolated converter will be much lower
 - Redundant 12 V_{IN} can be removed
 - Efficiency is similar, power density can be higher
 - Transient no longer a concern
- Potential improvements
 - 48 $V_{\rm IN}$ to 1.8 $V_{\rm OUT}$ isolated bus converter may provide higher efficiency

A Look into the Future

- Does it enable significant new capabilities?
- Is it easy to use?
- Is it VERY cost effective to the user?
- Is it reliable?

- Does it enable significant new capabilities?
- Is it easy to use?
- Is it VERY cost effective to the user?
- Is it reliable?

No Power Cords

Augmented Reality and Autonomous Cars

- RadHard
- Energy Efficient Lighting
- Class D Audio
- Various Medical

- Does it enable significant new capabilities?
- Is it easy to use?
- Is it VERY cost effective to the user?

• Is it reliable?

It's just like a MOSFET

except

The high frequency capability makes circuits using eGaN FETs sensitive to layout

APEC Communicating the Learning Curve

DC-DC Converter Handbook A Supplement to GaN Transistors for Efficient Power Conversion The eGaN[®] FET **Journey Continues David Reusch & John Glaser** SUPPLEMENT

Wireless Power Handbook A Supplement to GaN Transistors for Efficient Power Conversion

Michael A. de Rooij

Second Edition

Pate Universities with GaN Transistor Programs

University of Colorado

Ruhr University Bochum

Technische Universitaet Berlin

Denmark Technical University

University of Washington

Mississippi State University

Beijing Jiaotong University

Sun Yat-Sen University

LS Simulation - Imtek

University of Oulu

Honaik University

Nagasaki University

Dartmouth College

Université Laval

University of Parma

Harbin Industry University

Texas A&M University

Kookmin University

University of Alberta

University of Windsor

College de Maisonneuve

Wright State University

King's College London

Rowland Institute at Harvard

Universitat Freiburg

Cardiff University

Cornell University

Universitat Konstanz

Carleton University

Rochester Institute of Technology

University of Applied Sciences Kiel

Chalmers University of Technology

University of Applied Sciences Deggendorf

159

University of Iowa

Fraunhofer

Oregon Institute of Technology

Integrated System Research Lab

Embry-Riddle Aeronautical University

University of Applied Science Austria

Hogeschool van Amsterdam - University of Applied Sciences

University of Applied Sciences Ravensburg-Weingarten

Hochschule Kempten - University of Applied Sciences

Singapore University of Technology and Design

University of Cassino

University of Zagreb

Georgia Tech

Universities all over the world are graduating well-trained engineers experienced in the use of GaN Transistors

Vire	rinia	Torl
	лппа	1001

- MIT
- Auburn University National Chiao Tung University
- Zhejiang University
- Kyusu Institute of Technology
- University of Tennessee
- University of Illinois
- University of Southern Denmark
- University of Texas
- North Carolina State University
- University of Valencia
- Universität Kassel
- Case Western University
- Colorado State University
- University of Sheffield
- Delft University of Technology
- National Tsing Hua University
- Yamaguchi University
- FH Joanneum University of Applied Sciences
- University of Cambridge
- Rensselaer Polytechnic Institute
- ETH Zurich
- University of Michigan
- Nanvang Technological University
- Hong Kong University Aalborg University
- University of Toronto
- Universidad Miquel Hernandez
- Mid Sweden University
- **RFSS Lab**
- New Mexico State University
- Seoul Technical University
- Clausthal University of Technology
- Universita Di Padova
- University of Johannesburg
- University of North Carolina Charlotte
- **Oregon Tech**
- DEEEA-ETSE URV
- University of Maryland
- University of Stuttgart
- The Hong Kong University of Science & Technology
 - Tallinn University of Technology
- Harvard University
- University of Toledo

March, 2016

- University of Akron
- University of Dayton
- University of Zaragoza

- Stanford University
- University of Applied Sciences
- University of Bologna
- Missouri University
- University of Wisconsin
- Yale University
- **Reutlingen University**
- Kyushu University
- Ecomas
- Universidad de Oviedo
- University of Arkansas
- Chiba University
- Shimane University
- University of Florida
- University of Bristol
- Universitat Erlangen
- Seoul National University
 - University of Hamburg Institute of Experimental Physics
- Otto-Von-Guerick University
- City University of Hong Kong
- National Central University
- Missouri University of Science and Technology
- DTU Elektro
- Florida State University
- University of North Carolina
- University of Auckland
- Universidad Politenica de Madrid
- UCLA
- Universita di Roma la Sapienza
- Purdue University
- Oita University
- Arizona State University
- University of South Carolina
- University of Utah Catholic University of Leuven
- LAPLACE
- Pontifical Xavierian University
- Macquarie University
- Austrian Institute of Technology GmbH
- Auckland University of Technology
- Friedrich-Alexander University
- University of Warwick
- Centro De Estudios E Investigaciones
- Supelec University of Nottingham
- Universitat Rovira i Virgili
- University of Waikato
- University of Bremen
- Ferdinand-Braun-Institut

The Ohio State University

University of Nevada

Iowa State University

Newcastle University

Faculte Des Sciences

Xian JiaoTong Electric

Imperial College

ASIC Lab

EETAC

Universite Lille

Korea Universitv

Dalhousie University

Xi'An Jiaotong University

University of Connecticut

Oregon State University

University of Applied Sciences

Instituto de Telecomunicacoes

Naval Postgraduate School

Pukvong National University

Space Flight Lab - UTIAS

National Taiwan University University of Pittsburgh

Texas Tech University

University of Hannover

Nikhef Institute

Brunel University

UC Santa Barbara

Lausitz University

SUPSI-TTHF Lab

Curtin University

epc-co.com

Soongsil University

Rosenheim

University of Manchester

University of Hong Kong

Pennsylvania State University

University of Central Florida

NTB Hochschule Fur Technik

Braunschweig University of Technology

Flensburg University of Applied Sciences •

Center for Advanced Power Systems

Queensland University of Technology

Universitat Politecnica de Catalunya -

Federal University of Santa Catarina

Dresden University of Technology

National University of Colombia

University of New South Wales

Institute of Technology Sligo

Concordia University ECE

Bloomsburg University Queens University

- Does it enable significant new capabilities?
- Is it easy to use?
- Is it VERY cost effective to the user?
- Is it reliable?

Alex Lidow and Rob Strittmatter, "Enhancement Mode Gallium Nitride Transistor Reliability", IEEE First International Conference On DC Microgrids (ICDCM) 2015

Field Reliability

Data as of Oct, 2015

35B equivalent device hours in the field 15B total device hours

- 127 Field Returns (39 Good, 88 Failed)
 - 23 Layout Related
 - 62 Assembly Related
 - 1 Physical Abuse
 - 3 Device degradation (addressed in Gen 4 and screening)

• 3 Device Failures in 15B Hours equals 0.2 FIT

Moore's Law Revival

- GaN is rapidly improving
- GaN is not a drop in replacement
- GaN transistors will replace silicon power MOSFETs with a lower-cost and higher-efficiency solution.

Thank You For Your Time ! Questions?